Environmental Product Declaration

The Shaw Group – Shaw Brick

Clay Brick

According to ISO 21930 ISO 14025

The Shaw Group Clay Brick

1. General Information

Manufacturer Name: Shaw Brick - Nova Scotia Trunk 2, Lantz, NS B2S 1M9

Program Operator: ASTM International

100 Barr Harbor Drive West Conshohocken, PA

19428-2959, USA

Declaration Number: EPD 359

Reference PCR: Clay Brick, Clay Brick Pavers, and Structural Clay Tile (UNCPC

3731 and 3735)

Date of Issuance: September 20, 2022

End of Validity: September 20, 2027

Product Name: Clay Brick

EPD Owner: Shaw Brick

Declared Unit: 1 m³ of Clay Brick

EPD Scope: Cradle-to-gate (A1, A2, and A3)

Verification: ISO 21930 serves as the core PCR. Independent verification of the

declaration according to ISO 14025 and ISO 21930.

internal

LCA Reviewer Timothy S. Brooke and EPD Verifier: ASTM International

nothy S. Brooke
TM International

Environmental Product Declaration

Clay Brick

2. Product Information

2.1 Company Description

The Shaw Group is a leading manufacturing company in Eastern Canada with a focus on products for the construction industry. Shaw Group produces close to 1,000 individual products across 12 facilities in Altantic Canada. The company operates through a number of divisions and subsidiaries including Shaw Brick. Shaw Brick was founded in 1861 and is a distributor and retailer of high-quality clay brick, concrete block, and natural stone products.

2.2 Product Description

This EPD reports environmental transparency information for Clay Brick produced at the Shaw Brick facility in Lantz, Nova Scotia. The declared product studied in this EPD is Clay Brick. Shaw Brick produces clay brick in a wide variety of colours including black, brown, buff, grey, red, and white. Figure 1 provides visual representations of clay brick in a variety of colours produced at the facility. The products are available in face brick, building brick, paving brick, and thin brick types and align with the standards listed in Table 1. The formulation for these clay brick products is nearly identical except for small variances in additives. Therefore, this EPD studies a clay brick product that is representative of all of these types.

Table 1: Relevant Standards and Specifications for the Product

Product	Standard
Face Brick	ASTM C16 Standard Specification for Facing Brick (Solid Masonry
	Units Made from Clay or Shale)
	CSA A82 Fired masonry brick made from clay or shale
Building Brick	ASTM C62 Standard Specification for Building Brick (Solid Masonry
	Units Made from Clay or Shale)
	CSA A82 Fired masonry brick made from clay or shale
Paving Brick	ASTM C902 Standard Specifications for Pedestrian and Light
	Traffic Paving Brick
Thin Brick	ASTM C1088 Standard Specification for Thin Veneer Brick Units
	Made from Clay or Shale

Clay Brick

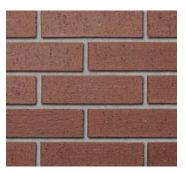


Figure 1: Clay brick products in the colours grey, red, buff, white and brown.

2.2 Technical Data

Table 2 and Table 3 provides technical data used for the Life Cycle Analysis calculations and material contents by percent breakdown.

Table 2: Technical Data used for the LCA Calculations

Property	Value	Unit
Moisture Content (raw clay	15.70	%
delivered to brick facility)		
Brick Density	2060	kg/m³

Table 3: Percent breakdown of product by weight.

Material	Percent Breakdown
Raw Clay	67%
Raw Shale	32%
Barium, Manganese, Chromox, Other additives	<1%

Ancillary and packaging data was used from the U.S – Canada Industrywide Clay Brick study completed in October 7, 2020.

Environmental Product Declaration

Clay Brick

3. LCA Calculation Rules

3.1 Declared Unit

The declared unit is 1m³ of average clay brick product produced at Shaw Brick's manufacturing facility in Nova Scotia.

3.2 System Boundary

The system boundary for this study is limited to a cradle-to-gate focus. (see also Table 4):

- A1 Raw material supply: Extraction, handling, and processing of input materials.
- **A2 Transportation**: Transportation of all input materials from the suppliers to the gate of the manufacturing facility.
- **A3 Manufacturing:** The preparation processes of Shaw Brick's manufacturing facility. This phase also includes the operations of the manufacturing facility and all process emissions that occur at the production facility.

3.3 Estimates and Assumptions

All significant foreground data was gathered from the manufacturer based on measured values.

3.4 Cut-off Criteria

The cut-off criteria for all activity stage flows considered within the system boundary conform with ISO 21930: 2017 Section 7.1.8. Specifically, the cut-off criteria were applied as follows:

- All inputs and outputs for which data are available are included in the calculated effects and no collected core process data are excluded.
- A one percent cut-off is considered for renewable and non-renewable primary energy consumption and the total mass of inputs within a unit process. The sum of the total neglected flows does not exceed 5% of all energy consumption and mass of inputs.
- All flows known to contribute a significant impact or to uncertainty are included.
- The cut-off rules are not applied to hazardous and toxic material flows all of which are included in the life cycle inventory.

No material or energy input or output was knowingly excluded from the system boundary.

3.5 Background Data and 3.6 Data Quality

Data was gathered for the primary material and energy inputs used in production for calendar year 2021. Primary data on the generic raw material winning/extraction and transportation of the raw clay and shale to the manufacturing facility and primary data from the manufacturing facility were collected separately. Table 3 describes each LCI data source for raw materials (A1),

Clay Brick

transportation (A2) and the core manufacture process (A3). Table 4 also includes a data quality assessment on the basis of the technological, temporal, and geographical representativeness.

3.6 Comparability

EPDs are comparable only if they comply with this document, use the same sub-category PCR where applicable, include all relevant information modyles and are based on equivalent scenarios with respect to the context of construction works.

Table 4: Secondary data sources and data quality assessment across A1, A2, A3 for the manufacturing facility

A1: Raw Material Ir	nputs			
			V	
Inputs	LCI Data Source	Geography	Year	Data Quality Assessment
Raw Clay/Raw	Data used from analysis of	Exact	2021	Technology: very good
Shale	the generic raw			Time: very good
	winning/extraction and			Geography: very good
	transportation of raw clay			
	and shale to manufacturing			
	facility			
Barrium	Ecoinvent 3.7: Barium	US	2018	Technology: good
	carbonate (GLO) market for			Time: very good
	barium carbonate Cut-off,			Data is <5 years old
	U			Geography: good
				Data is representative of global
				conditions.
Manganese	Ecoinvent 3.7: Manganese	Global	2018	Technology: good
	{GLO} market for Cut-off,			Time: very good
	U (of project Ecoinvent 3 -			Data is <5 years old
	allocation, cut-off by			Geography: good
	classification - unit)			Data is representative of global
				conditions.
Chromox	Ecoinvent 3.7: Chromite ore	Global	2018	Technology: fair
	concentrate (GLO) market			Time: very good
	for Cut-off, U			Data is <5 years old
				Geography: good
				Data is representative of global
				conditions.
A2: Transportation				
Inputs	LCI Data Source	Geography	Year	Data Quality Assessment

Environmental Product Declaration

Clay Brick

Turreleine	LICI Cl. Transment single	LIC	204.4	Tachmalamussams
Trucking	USLCI: Transport, single	US	2014	Technology: very good
	unit truck, short-haul, diesel			Time: good
	powered,			Data is <10 years old
	Northwest/tkm/RNA			Geography: good
A3: Manufacturing	9			
Energy	LCI Data Source	Geography	Year	Data Quality Assessment
Electricity	Ecoinvent 3: Electricity, low	Global	2018	Technology: very good
	voltage {CA-NS} market for			Time: very good
	Cut-off, U			Data is <5 years old
				Geography: very good
Natural Gas	USLCI: Natural gas,	Global	2014	Technology: very good
	combusted in industrial			Time: good
	boiler/US			Data is <10 years old
				Geography: very good.
Diesel Fuel	US LCI: Diesel, combusted	Global	2018	Technology: very good
	in industrial equipment/US			Time: very good
				Data is <5 years old
				Geography: good
Plastic Strapping	USLCI: Packaging film,	Global	2014	Technology: very good
	LDPE, at plant/US- US-EI U			Time: good
				Data is <10 years old
				Geography: very good.
Wooden Pallets	USLCI: Dry rough lumber, at	Global	2014	Technology: very good
	kiln, US SE NREL /US			Time: good
	Packaging			Data is <10 years old
				Geography: very good.
Dividers	USLCI: Dry rough lumber, at	Global	2014	Technology: very good
	kiln, US SE NREL /US			Time: good
	Packaging			Data is <10 years old
				Geography: very good.
	1	1	L	I .

3.7 Period under Review

Data was gathered for the primary material and energy inputs used in the production for calendar year 2021.

Clay Brick

3.8 Allocation

Shaw Brick produces multiple products. Since the primary data for manufacturing was only available on a facility level, the environmental load among the products produced is allocated according to its mass. For waste that is recycled, the 'recycled content approach' was chosen. The recycling of waste generated by the product system is cut off.

3.9 Comparability

This LCA was created using industry average data for upstream materials. Data variation can result from differences in supplier locations, manufacturing processes, manufacturing efficiency and fuel types used.

4. LCA Results

Life cycle impact assessment (LCIA) is the phase in which the set of results of the inventory analysis – the inventory flow table – is further processed and interpreted in terms of environmental impacts and resource use inventory metrics. Tables 4 and 5 below summmarize the LCA results for the cradle-to-gate (A1-A3) product system. The results are calculated based on TRACI 2.1 (IPCC AR5 for GWP) per the PCR. For supplementary results according to ISO:21930 2017 see Appendix A.

Table 5: Description of the System Boundary (x: included in LCA; mnd: module not declared; mnr: module not reported)

Product			struction allation	Use					I	End-of	-Life		th	efits Bo e Syst ounda				
Raw Material Supply	Transport	Manufacturing	Transport	Construction / Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational Energy Use	Operational Water Use	De-Construction/ Demolition	Transport	Waste Processing	Disposal	Reuse	Recovery	Recycling
A1	A2	А3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	С3	C4	D	D	D
Х	Х	Х	mnd	mnd	mnd	mnd	mnr	mnr	mnr	mnd	mnd	mnd	mnd	mnd	mnd	mnd	mnd	mnd

Environmental **P**roduct **D**eclaration

Clay Brick

Table 6: LCA Results for 1 m³ of Clay Brick

Environmental Indicator	Units	Total	A1	A2	А3	
Environmental impact						
Global Warming Potential	kg CO₂-eq	7.21E+02	4.98E+01	1.62E+01	6.55E+02	
Acidification Potential	kg SO₂-eq	6.96E+00	4.62E-01	1.70E-01	6.32E+00	
Eutrophication Potential	kg PO₄-eq	1.04E+00	1.98E-01	1.01E-02	8.34E-01	
Smog Potential	kg O₃-eq	4.73E+01	9.65E+00	4.27E+00	3.34E+01	
Ozone Depletion Potential	kg CFC-11-eq	1.26E-05	5.79E-06	6.77E-10	6.84E-06	
Total primary energy consumption						
Nonrenewable Fossil	MJ	9.67E+03	5.97E+02	2.52E+02	8.82E+03	
Nonrenewable Nuclear	MJ	8.46E+01	6.37E+01	0.00E+00	2.09E+01	
Renewable (Solar, Wind, Hydroelectric, and Geothermal)	МЈ	3.30E+01	8.48E+00	0.00E+00	2.45E+01	
Renewable (Biomass)	MJ	5.05E+01	7.89E+00	0.00E+00	4.26E+01	
Material resources consumption						
Non-renewable Material Resources	kg	2.06E+03	2.06E+03	0.00E+00	0.00E+00	
Renewable Material Resources	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Net Fresh Water (Inputs Minus Outputs)	L	6.40E+03	0.00E+00	0.00E+00	6.40E+03	
Total waste generation						
Non-Hazardous Waste Generated	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Hazardous Waste Generated	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	

5. Interpretation

Figure 2 shows the relative contribution to the cumulative impacts of the A1 through A3 phases of the cradle-to-gate life cycle. For all the major impact categories (GWP, ODP, AP, EP, SFP, ADPf), the biggest contributor is A3 – Manufacturing Data. The majority of emissions from A3 come from the natural gas and electricity used at the facility. There are some contributions from A1 – Raw Material Supply which are mostly from the extraction and processing of the raw clay and shale and very little emissions from A2 – Transportation.

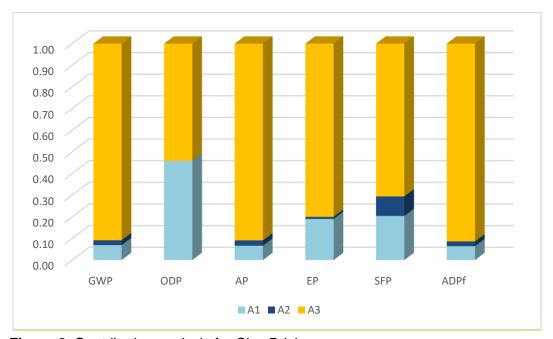


Figure 2. Contribution analysis for Clay Brick.

6. Additional Environmental Information

No regulated substances are contained in the declared product.

Clay Brick

7. References

- ASTM 2020 ASTM Program Operator for Product Category Rules (PCR) and Environmental Product Declarations (EPDs) General Program Instructions v8, April 29th.
- 2. Athena Institute: 2021 A Cradle-to-Gate Life Cycle Assessment of Clay Brick Manufactured by The Shaw Group.
- 3. ISO 21930: 2017 Building construction Sustainability in building construction Environmental declaration of building products.
- 4. ISO 14025: 2006 Environmental labeling and declarations Type III environmental declarations Principles and procedures.
- 5. ISO 14044:2006/AMD 1:2017/ AMD 2:2020 Environmental management Life cycle assessment Requirements and guidelines.
- 6. 14040:2006/AMD 1:2020 Environmental management Life cycle assessment Principles and framework.
- 7. NSF: 2020 U.S. Canada Industrywide Clay Brick Environmental Product Declaration for The Brick Industry Association
- 8. NSF PCR for Clay Brick, Clay Brick Pavers, and Structural Clay Tile (UNCPC 3731 and 3735) Extended 12 months per PCRExt 2022-104 valid until June 30, 2023

The Shaw Group Clay Brick

Appendix A – Results per ISO 21930

Table 7: Results per ISO 21930

Environmental Indicator	Abbreviation	Units	Total	A1	A2	А3			
Core Mandatory Impact Indicator									
Global warming potential	GWP	kg CO₂-eq	7.21E+02	4.98E+01	1.62E+01	6.55E+02			
Depletion potential of the stratospheric ozone layer	ODP	kg CFC-11- eq	1.26E-05	5.79E-06	6.77E-10	6.84E-06			
Acidification potential of land and water	АР	kg SO₂-eq	6.96E+00	4.62E-01	1.70E-01	6.32E+00			
Eutrophication potential	EP	kg PO ₄ -eq	1.04E+00	1.98E-01	1.01E-02	8.34E-01			
Formation of tropospheric ozone	SFP	kg O₃-eq	4.73E+01	9.65E+00	4.27E+00	3.34E+01			
Abiotic depletion potential for fossil resources	ADPf	MJ Surplus	1.04E+04	6.66E+02	2.30E+02	9.50E+03			
Fossil fuel depletion	FFD	MJ Surplus	1.36E+03	5.85E+01	0.00E+00	1.30E+03			
Use of Primary Resources									
Renewable primary energy carrier used as energy	RPRE	MJ	3.83E+02	9.07E+01	0.00E+00	2.93E+02			
Renewable primary energy carrier used as material	RPRM	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Non-renewable primary energy used as energy	NRPRE	MJ	1.15E+04	7.83E+02	2.44E+02	1.05E+04			
Non-renewable primary energy used as material	NRPRM	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Secondary Material, Secondary Fuel and	Recovered Energ	ıy	•	•	•				
Use of secondary materials	SM	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Use of renewable secondary fuels	RSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Use of non-renewable secondary fuels	NRSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Recovered energy	RE	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Mandatory Inventory Parameters									
Use of freshwater resources	FW	m³	2.93E+01	2.87E+01	0.00E+00	5.59E-01			
Indicators Describing Waste									
Disposed of hazardous waste	HWD	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Disposed of non-hazardous waste	NHWD	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Disposed of high-level radioactive waste	HLRW	m³	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Disposed of low-level radioactive waste	LLRW	m³	9.93E-07	5.63E-07	0.00E+00	4.30E-07			
Components for reuse	CRU	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Materials for recycling	MFR	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Materials for energy recovery	MER	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Recovered energy exported	EE	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00			

